USN

Sixth Semester B.E. Degree Examination, June/July 2017 Aerodynamics – II

Time: 3 hrs.

Note: Answer FIVE full questions selecting

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- a. Calculate the pressure coefficient distribution around a circular cylinder using the source Panel technique. (16 Marks)
 - b. Explain the difference between source panel and vortex panel methods.

(04 Marks)

- a. Derive the expression for the induced AOA and induced drag coefficient using elliptical lift distribution.

 (10 Marks)
 - b. Derive an expression for lift coefficient and induced drag coefficient in terms of circulation strength $\Gamma(y)$ for a finite wing using through general lift distribution. (10 Marks)
- a. Derive the velocity potential equation for an inviscid, compressible, irrotational, subsonic flow over a body immersed in a uniform flow. (12 Marks)
 - b. At a given point on the surface of an airfoil, the pressure coefficient is 0.3 at very low speeds. If the free stream is 300 m/s at standard sea level conditions, calculate the pressure coefficient at the same point at this speed. (04 Marks)
 - c. The lift coefficient for a thin, symmetric airfoil in an incompressible flow is $C_L = 2\pi\alpha$. Calculate the compressible lift coefficient at a flight velocity at sea level condition is $V_{\infty} = 248$ m/sec. (04 Marks)
- 4 a. Define and derive continuity, momentum and energy equation for normal shock waves.

(10 Marks)

- b. Consider an airplane flying at a velocity of 250 m/s. Calculate it's Mach number if it is flying at a standard altitude of (i) sea level (ii) 5 km (iii) 10 km. Assume T_{∞} at sea level = 288 K, T_{∞} at 5 km = 255.7 and T_{∞} at 10 km = 223.3 (06 Marks)
- c. A supersonic airplane is flying at Mach 2 at an altitude of 16 km. Assume the shock wave pattern from the airplane quickly coalesces into mach wave that intersects the ground behind the airplane, causing a 'sonic boom' to be heard by a bystander on the ground. At the instant the sonic boom is heard, how far ahead of the bystander is the airplane? (04 Marks)

PART - B

- 5 Write short notes on the following:
 - a. Simplified horse shoe vortex model.
 - b. Formation of flight.
 - c. Influence of downwash on tail place.
 - d. Ground effects. (20 Marks)
- 6 Deduce the following:

a.
$$-\frac{\tau+1}{V_{\infty}}\phi_x\phi_{xx} + \phi_{rr} + \frac{1}{r}\phi_r = 0$$
 (10 Marks)

b.
$$R(x) \left(\frac{v_r}{v_{\infty} + u} \right)_c \approx \frac{(rv_r)_0}{v_{\infty}} = R(x) \frac{dR(x)}{dx}$$
 (10 Marks)

10AE63

- 7 a. What are high lift devices? List them and explain their effects on aerodynamic characteristics. (10 Marks)
 - b. Discuss the advantages of swept wings in modern airplanes.

(10 Marks)

- 8 a. Derive and illustrate with a neat sketch of the boundary layer properties over a flat plate considering viscous flow. (12 Marks)
 - b. Derive the Navier-stokes equation for an unsteady, compressible, three-dimensional viscous flow.

 (08 Marks)

* * * * *